Skip to main content

Discrete Mathematics for Computer Science: An open educational resource.

Appendix C Notation

The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.
Symbol Description Location
\(\) \(x\) is an element of \(A\) Paragraph
\(x \notin A\) \(x\) is not an element of \(A\) Paragraph
\(\lvert A \rvert \) The number of elements in a finite set \(A\text{.}\) Definition 1.1.2
\(A \subseteq B\) \(A\) is a subset of \(B\text{.}\) Definition 1.1.3
\(\emptyset\) the empty set Paragraph
\(A \cap B\) The intersection of \(A\) and \(B\text{.}\) Definition 1.2.1
\(A \cup B\) The union of \(A\) and \(B\text{.}\) Definition 1.2.4
\(B - A\) The difference of set \(B\) and set \(A\) or the complement of \(A\) relative to \(B\text{.}\) Definition 1.2.10
\(\overline{A}\) The complement of \(A\) relative to the universe. Definition 1.2.10
\(A\oplus B\) The symmetric difference of \(A\) and \(B\text{.}\) Definition 1.2.15
\(A \times B\) The cartesian product of \(A\) with \(B\text{.}\) Definition 1.3.1
\(\mathcal{P}(A)\) The power set of \(A\text{,}\) the set of all subsets of \(A\text{.}\) Definition 1.3.3
\(n!\) \(n\) factorial, the product of the first \(n\) positive integers Definition 2.2.5
\(\binom{n}{k}\) \(n\) choose \(k\text{,}\) the number of \(k\) element subsets of an \(n\) element set. Definition 2.4.3
\(p \land q\) the conjunction, \(p \textrm{ and } q\) Definition 4.1.3
\(p \lor q\) the disjunction, \(p \textrm{ or } q\) Definition 4.1.4
\(\neg p\) the negation of \(p\text{,}\) “not \(p\) Definition 4.1.5
\(p \to q\) The conditional proposition If \(p\) then \(q\text{.}\) Definition 4.1.6
\(p \leftrightarrow q\) The biconditional proposition \(p\) if and only if \(q\) Definition 4.1.10
\(1\) symbol for a tautology Definition 4.3.2
\(0\) symbol for a contradiction Definition 4.3.4
\(r \iff s\) \(r\) is logically equivalent to \(s\) Definition 4.3.6
\(r \Rightarrow s\) \(r\) implies \(s\) Definition 4.3.11
\(p \uparrow q\) NAND of \(p\) and \(q\) Definition 4.3.14
\(T_p\) the truth set of \(p\) Definition 4.5.3
\((\exists n)_U(p(n))\) The statement that \(p(n)\) is true for at least one value of \(n\) Definition 4.6.1
\((\forall n)_U(p(n))\) The statement that \(p(n)\) is always true. Definition 4.6.3
\(\pmb{0}_{m\times n}\) the \(m\) by \(n\) zero matrix Item
\(I_{n}\) The \(n \times n\) identity matrix Definition 7.2.4
\(A^{-1}\) \(A\) inverse, the multiplicative inverse of \(A\) Definition 7.2.5
\(\det A\textrm{ or }\lvert A \rvert\) The determinant of \(A\) Definition 7.2.7
\(f:A \rightarrow B\) A function, \(f\text{,}\) from \(A\) into \(B\) Definition 8.1.1
\(B^A\) The set of all functions from \(A\) into \(B\) Definition 8.1.4
\(f(a)\) The image of \(a\) under \(f\) Definition 8.1.6
\(f(X)\) Range of function \(f:X \rightarrow Y\) Definition 8.1.7
\(\lvert A \rvert = n\) \(A\) has cardinality \(n\) Definition 8.2.7
\((g \circ f)(x) = g(f(x))\) The composition of \(g\) with \(f\) Definition 8.3.2
\(f \circ f = f^2\) the “square” of a function. Definition 8.3.5
\(i \textrm{ or } i_A\) The identitiy function (on a set \(A\)) Definition 8.3.8
\(f^{-1}\) The inverse of function \(f\) read “\(f\) inverse” Definition 8.3.11
\(a \mid b\) \(a\) divides \(b\text{,}\) or \(a\) divides evenly into \(b\) Definition 10.1.5
\(x R y\) \(x\) is related to \(y\) through the relation \(R\) Paragraph
\(r s\) the composition of relation \(R\) with relation \(S\) Definition 10.1.9
\(a \equiv_m b\) \(a\) is congruent to \(b\) modulo \(m\) Definition 10.3.13
\(a \equiv b (\textrm{mod } m)\) \(a\) is congruent to \(b\) modulo \(m\) Definition 10.3.13
\(c(a)\) the equivalence class of \(a\) under \(R\) Item 10.3.4.7.b
\(r^+\) The transitive closure of \(R\) Definition 10.5.1
\(\pmb{0}\) least element in a poset Definition 12.1.7
\(\pmb{1}\) greatest element in a poset Definition 12.1.7
\(D_n\) the set of divisors of integer \(n\) Definition 12.1.9
\(a \lor b\) the join, or least upper bound of \(a\) and \(b\) Definition 12.2.1
\(a \land b\) the meet, or greatest lower bound of \(a\) and \(b\) Definition 12.2.1
\([L;\lor,\land]\) A lattice with domain having meet and join operations Definition 12.2.2
\(\bar{a}\) The complement of lattice element \(a\) Definition 12.3.6
\([B; \lor , \land, \bar{\hspace{5 mm}}]\) a Boolean algebra with operations disjunction, conjunction and complementation Definition 12.3.8
\(\) Definition 12.3.12
\(M_{\delta_1 \delta_2 \cdots \delta_k}\) the minterm generated by \(x_1, x_2, \ldots , x_k\text{,}\) where \(y_i=x_i\) if \(\delta_i = 1\) and \(y_i=\bar{x_i}\) if \(\delta_i = 0\) Definition 12.6.3
\(log_b a\) Logarithm, base \(b\) of \(a\) Definition 13.2.4
\(S\uparrow\) \(S\) pop Definition 13.3.3
\(S\downarrow\) \(S\) push Definition 13.3.3
\(S*T\) Convolution of sequences \(S\) and \(T\) Definition 13.3.3
\(S\uparrow p\) Multiple pop operation on \(S\) Definition 13.3.6
\(S\downarrow p\) Multiple push operation on \(S\) Definition 13.3.6
\(\grave x, \acute x\) pre and post values of a variable \(x\) Definition 14.2.1
\(K_n\) A complete undirected graph with \(n\) vertices Definition 15.1.12
\(deg(v), indeg(v), outdeg(v)\) degree, indegree and outdegree of vertex \(v\) Definition 15.1.29
\(Q_n\) the \(n\)-cube Definition 15.4.17
\(V(f)\) The value of flow \(f\) Definition 15.5.21
\(P_n\) Definition 15.6.4
\(\chi(G)\) the chromatic number of \(G\) Definition 15.6.14
\(C_n\) A cycle with \(n\) edges. Definition 16.1.1
\(\Sigma = \{0,1}\) An alphabet with two elements, 0 and 1. Definition 17.1.1
\(a_1 a_2 \ldots a_n\) A string with \(n\) symbols Definition 17.1.3
\(|x|\) The length of string \(x\) Definition 17.1.5
\(xy\) The concatenation of string \(x\) and string \(y\text{.}\) Definition 17.1.6
\(x^R\) The reverse of string \(x\text{.}\) Definition 17.1.7
\(\Phi\) A regular expression. Definition 17.2.1
\(L(r)\) A language generated by regular expression \(r\text{.}\) Definition 17.2.2
\(\PRODUCES\) Produces, as in \(A\PRODUCES ab\) Paragraph
\(\YIELDS\) Yields, as in \(x\YIELDS_G y.\)String \(y\) can be obtained from a string \(x\) by applying one production rule in \(G\) Paragraph
\(\YIELDS_G^*\) Yields in zero or more steps. Paragraph